Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
JPEN J Parenter Enteral Nutr ; 47(8): 983-992, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37357015

RESUMEN

BACKGROUND: Beta-hydroxy-beta-methylbutyrate (HMB) is a nutrition supplement that may attenuate muscle wasting from critical illness. This trial aimed to determine feasibility of administering a blinded nutrition supplement in the intensive care unit (ICU) and continuing it after ICU discharge. METHODS: Single-center, parallel-group, blinded, placebo-controlled, randomized feasibility trial. After traumatic injury necessitating admission to ICU, participants were randomized to receive an enteral study supplement of 3 g of HMB (intervention) or placebo daily for 28 days or until hospital discharge. Primary outcome was feasibility of administering the study supplement, quantified as protocol adherence. Secondary outcomes included change in quadriceps muscle thickness, measured weekly until day 28 or hospital discharge by using ultrasound and analyzed by using a linear mixed model. RESULTS: Fifty randomized participants (intervention, n = 26; placebo, n = 24) showed comparable baseline characteristics. Participants received 862 (84.3%) of the 1022 prescribed supplements during hospitalization with 543 (62.8%) delivered via an enteral feeding tube. The median (IQR) number of study supplements successfully administered per participant was 19.5 (13.0-24.0) in the intervention group and 16.5 (8.5-23.5) in the placebo group. Marked loss of quadriceps muscle thickness occurred in both groups, with the point estimate favoring attenuated muscle loss with the intervention, albeit with wide CIs (mean intervention difference after 28 days, 0.26 cm [95% CI, -0.13 to 0.64]). CONCLUSION: A blinded, placebo-controlled, randomized clinical trial of daily enteral HMB supplementation for up to 28 days in hospital is feasible. Any effect of HMB supplementation to attenuate muscle wasting after traumatic injury remains uncertain.


Asunto(s)
Músculo Esquelético , Valeratos , Humanos , Proyectos Piloto , Músculo Esquelético/fisiología , Valeratos/farmacología , Valeratos/uso terapéutico , Suplementos Dietéticos , Atrofia Muscular
2.
J Cachexia Sarcopenia Muscle ; 13(3): 1541-1553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35249268

RESUMEN

BACKGROUND: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.


Asunto(s)
Sobrecarga de Hierro , Distrofia Muscular de Duchenne , Animales , Deferiprona , Distrofina/genética , Ferritinas , Fibrosis , Hemo/metabolismo , Hierro/metabolismo , Quelantes del Hierro , Sobrecarga de Hierro/etiología , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Especies Reactivas de Oxígeno/metabolismo
3.
J Neurogastroenterol Motil ; 26(1): 133-146, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31715094

RESUMEN

BACKGROUND/AIMS: Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. METHODS: Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. RESULTS: ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. CONCLUSIONS: GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.

4.
Sci Rep ; 9(1): 12982, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506484

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.


Asunto(s)
Modelos Animales de Enfermedad , Glicinérgicos/administración & dosificación , Glicina/administración & dosificación , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Prednisolona/farmacología , Animales , Antiinflamatorios/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología
5.
Curr Opin Clin Nutr Metab Care ; 20(4): 237-242, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28375879

RESUMEN

PURPOSE OF REVIEW: The review summarizes the recent literature on the role of glycine in skeletal muscle during times of stress. RECENT FINDINGS: Supplemental glycine protects muscle mass and function under pathological conditions. In addition, mitochondrial dysfunction in skeletal muscle leads to increased cellular serine and glycine production and activation of NADPH-generating pathways and glutathione metabolism. These studies highlight how glycine availability modulates cellular homeostasis and redox status. SUMMARY: Recent studies demonstrate that supplemental glycine effectively protects muscles in a variety of wasting models, including cancer cachexia, sepsis, and reduced caloric intake. The underlying mechanisms responsible for the effects of glycine remain unclear but likely involve receptor-mediated responses and modulation of intracellular metabolism. Future research to understand these mechanisms will provide insight into glycine's therapeutic potential. Our view is that glycine holds considerable promise for improving health by protecting muscles during different wasting conditions.


Asunto(s)
Glicina/metabolismo , Homeostasis/fisiología , Músculo Esquelético/metabolismo , Animales , Antiinflamatorios , Suplementos Dietéticos , Glicina/administración & dosificación , Humanos , Enfermedades Metabólicas/prevención & control , Ratones , Atrofia Muscular/metabolismo , Oxidación-Reducción , Receptores de Glicina/fisiología , Síndrome Debilitante/prevención & control
6.
Clin Nutr ; 35(5): 1118-26, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26431812

RESUMEN

BACKGROUND & AIM: Calorie restriction (CR) reduces co-morbidities associated with obesity, but also reduces lean mass thereby predisposing people to weight regain. Since we demonstrated that glycine supplementation can reduce inflammation and muscle wasting, we hypothesized that glycine supplementation during CR would preserve muscle mass in mice. METHODS: High-fat fed male C57BL/6 mice underwent 20 days CR (40% reduced calories) supplemented with glycine (1 g/kg/day; n = 15, GLY) or l-alanine (n = 15, ALA). Body composition and glucose tolerance were assessed and hindlimb skeletal muscles and epididymal fat were collected. RESULTS: Eight weeks of a high-fat diet (HFD) induced obesity and glucose intolerance. CR caused rapid weight loss (ALA: 20%, GLY: 21%, P < 0.01), reduced whole-body fat mass (ALA: 41%, GLY: 49% P < 0.01), and restored glucose tolerance to control values in ALA and GLY groups. GLY treated mice lost more whole-body fat mass (14%, p < 0.05) and epididymal fat mass (26%, P < 0.05), less lean mass (27%, P < 0.05), and had better preserved quadriceps muscle mass (4%, P < 0.01) than ALA treated mice after 20 d CR. Compared to the HFD group, pro-inflammatory genes were lower (P < 0.05), metabolic genes higher (P < 0.05) and S6 protein phosphorylation lower after CR, but not different between ALA and GLY groups. There were significant correlations between %initial fat mass (pre CR) and the mRNA expression of genes involved in inflammation (r = 0.51 to 0.68, P < 0.05), protein breakdown (r = -0.66 to -0.37, P < 0.05) and metabolism (r = -0.59 to -0.47, P < 0.05) after CR. CONCLUSION: Taken together, these findings suggest that glycine supplementation during CR may be beneficial for preserving muscle mass and stimulating loss of adipose tissue.


Asunto(s)
Restricción Calórica , Suplementos Dietéticos , Glicina/administración & dosificación , Obesidad/tratamiento farmacológico , Animales , Composición Corporal , Índice de Masa Corporal , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Obesidad/etiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aumento de Peso , Pérdida de Peso
7.
J Nutr ; 145(5): 900-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740910

RESUMEN

BACKGROUND: Increasing arginine (Arg) availability reduces atrophy in cultured skeletal muscle cells. Supplementation with its metabolic precursor citrulline (Cit) is more effective at improving skeletal muscle Arg concentrations. OBJECTIVE: We tested the hypothesis that Cit supplementation would attenuate skeletal muscle atrophy and loss of function during hindlimb immobilization in mice. METHODS: Male C57BL/6JArc mice underwent 14 d of unilateral hindlimb immobilization/plaster casting and were supplemented with ~0.81 g Cit · kg⁻¹ · d⁻¹ (CIT group) or Ala (ALA group) mixed into their food. The uncasted contralateral limb (internal control) and an uncasted group (CON) served as controls. Muscle atrophy was evaluated with mass, fiber area, and in situ muscle function. RESULTS: Tibialis anterior (TA) muscle mass [ALA: 37.6 ± 0.92 mg; CIT: 38.3 ± 1.25 mg] and peak tetanic force (ALA: 1150 ± 38.5 mN; CIT: 1150 ± 52.0 mN) were lower (P < 0.001) in the ALA (53.9 ± 0.42 mg) and CIT (1760 ± 28.5 mN) groups than in the CON group. No difference was found between ALA and CIT groups for TA mass, fiber area, or peak force. The mRNA expression of the nitric oxide synthase 2, inducible (Nos2; ~15-fold) and B-cell chronic lymphoid leukemia/lymphoma 2/adenovirus E1B 19 kDa interacting protein 3 (Bnip3; ~17-fold) genes and the ratio of microtubule-associated protein light chain 3BII to 3BI (LC3BII:LC3BI) (50.5% ± 17.7%) were higher (P < 0.05) in the ALA group than in the CON group, suggesting increased autophagy. In the CIT group, Bnip3 mRNA was lower (-70%; P < 0.05) and Nos2 mRNA tended to be lower (-45%; P = 0.05) than in the ALA group, whereas LC3BII:LC3BI was not different from the CON group. CONCLUSIONS: Cit treatment of male mice did not affect therapeutically relevant outcome measures such as skeletal muscle mass and peak muscle force after 14 d of hindlimb immobilization.


Asunto(s)
Citrulina/uso terapéutico , Suplementos Dietéticos , Modelos Animales de Enfermedad , Proteínas Musculares/metabolismo , Debilidad Muscular/prevención & control , Músculo Esquelético/patología , Atrofia Muscular/prevención & control , Animales , Autofagia , Biomarcadores/metabolismo , Citrulina/metabolismo , Fijación de Fractura/efectos adversos , Regulación de la Expresión Génica , Miembro Posterior , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/genética , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Restricción Física/efectos adversos
8.
Clin Nutr ; 33(6): 937-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25444557

RESUMEN

Amino acids are potent modulators of protein turnover and skeletal muscle cells are highly sensitive to changes in amino acid availability. During amino acid abundance increased activity of mTORC1 drives protein synthesis and growth. In skeletal muscle, it has been clearly demonstrated that of all the amino acids, leucine is the most potent stimulator of mTORC1 and protein synthesis in vitro and in vivo. As such, leucine has received considerable attention as a potential pharmaconutrient for the treatment of numerous muscle wasting conditions. However, despite a multitude of studies showing enhanced acute protein synthesis with leucine or leucine-rich supplements in healthy individuals, additional leucine intake does not necessarily enhance protein synthesis during muscle wasting conditions. In addition, long-term, placebo controlled, iso-caloric studies in humans consistently show no beneficial effect of leucine supplementation on skeletal muscle mass or function. This review, critically evaluates the therapeutic potential of leucine to attenuate the skeletal muscle wasting associated with ageing, cancer and immobilization/bed rest. It also highlights the impact of inflammation on amino acid sensing, mTORC1 activation and stimulation of protein synthesis and challenges the underlying hypothesis that the acute activation of mTORC1 and stimulation of protein synthesis by leucine increases in muscle mass over time. We conclude that leucine, as a standalone nutritional intervention, is not effective in the prevention of muscle wasting. Future work should focus on identifying and utilizing other nutrients or treatments that sensitize skeletal muscle to leucine, thereby enhancing its therapeutic potential for muscle wasting conditions.


Asunto(s)
Envejecimiento/fisiología , Leucina/farmacología , Atrofia Muscular/tratamiento farmacológico , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo
9.
J Crit Care ; 29(4): 695.e1-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24768534

RESUMEN

PURPOSE: The purpose was to determine (a) safety and feasibility of functional electrical stimulation (FES)-cycling and (b) compare FES-cycling to case-matched controls in terms of functional recovery and delirium outcomes. MATERIALS AND METHODS: Sixteen adult intensive care unit patients with sepsis ventilated for more than 48 hours and in the intensive care unit for at least 4 days were included. Eight subjects underwent FES-cycling in addition to usual care and were compared to 8 case-matched control individuals. Primary outcomes were safety and feasibility of FES-cycling. Secondary outcomes were Physical Function in Intensive Care Test scored on awakening, time to reach functional milestones, and incidence and duration of delirium. RESULTS: One minor adverse event was recorded. Sixty-nine out of total possible 95 FES sessions (73%) were completed. A visible or palpable contraction was present 80% of the time. There was an improvement in Physical Function in Intensive Care Test score of 3.9/10 points in the intervention cohort with faster recovery of functional milestones. There was also a shorter duration of delirium in the intervention cohort. CONCLUSIONS: The delivery of FES-cycling is both safe and feasible. The preliminary findings suggest that FES-cycling may improve function and reduce delirium. Further research is required to confirm the findings of this study and evaluate the efficacy of FES-cycling.


Asunto(s)
Enfermedad Crítica/terapia , Terapia por Estimulación Eléctrica/métodos , Adulto , Anciano , Estudios de Casos y Controles , Cuidados Críticos , Delirio/etiología , Terapia por Estimulación Eléctrica/efectos adversos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Recuperación de la Función , Sepsis/complicaciones
10.
Clin Nutr ; 33(3): 448-58, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23835111

RESUMEN

BACKGROUND AND AIMS: The non-essential amino acid, glycine, is often considered biologically neutral, but some studies indicate that it could be an effective anti-inflammatory agent. Since inflammation is central to the development of cancer cachexia, glycine supplementation represents a simple, safe and promising treatment. We tested the hypothesis that glycine supplementation reduces skeletal muscle inflammation and preserves muscle mass in tumor-bearing mice. METHODS: To induce cachexia, CD2F1 mice received a subcutaneous injection of PBS (control, n = 12) or C26 tumor cells (n = 32) in accordance with the protocols developed by Murphy et al. [Murphy KT, Chee A, Trieu J, Naim T, Lynch GS. Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia. Dis Models Mech 2012;5(4):533-545.]. Subcutaneous injections of glycine (n = 16) or PBS (n = 16) were administered daily for 21 days and at the conclusion of treatment, selected muscles, tumor and adipose tissue were collected and prepared for Real-Time RT-PCR or western blot analysis. RESULTS: Glycine attenuated the loss of fat and muscle mass, blunted increases in markers of inflammation (F4/80, P = 0.01 & IL-6 mRNA, P = 0.01) and atrophic signaling (MuRF, P = 0.047; atrogin-1, P = 0.04; LC3B, P = 0.06 and; BNIP3, P = 0.10) and tended to attenuate the loss of body mass (P = 0.07), muscle function (P = 0.06), and oxidative stress (GSSG/GSH, P = 0.06 and DHE, P = 0.07) seen in tumor-bearing mice. Preliminary studies that compared the effect of glycine administration with isonitrogenous doses of alanine or citrulline showed that the observed protective effect was specific to glycine. CONCLUSIONS: Glycine protects skeletal muscle from cancer-induced wasting and loss of function, reduces the oxidative and inflammatory burden, and reduces the expression of genes associated with muscle protein breakdown in cancer cachexia. Importantly, these effects were glycine specific.


Asunto(s)
Caquexia/tratamiento farmacológico , Glicina/farmacología , Inflamación/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Índice de Masa Corporal , Caquexia/etiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Interferón gamma/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Ratones , Músculo Esquelético/patología , Atrofia Muscular , Neoplasias/complicaciones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/sangre
11.
Crit Care Med ; 41(10): 2406-18, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23921276

RESUMEN

CONTEXT: The role of electrical muscle stimulation in intensive care has not previously been systematically reviewed. OBJECTIVES: To identify, evaluate, and synthesize the evidence examining the effectiveness and the safety of electrical muscle stimulation in the intensive care, and the optimal intervention variables. DATA SOURCES: A systematic review of articles using eight electronic databases (Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Excerpta Medica Database, Expanded Academic ASAP, MEDLINE, Physiotherapy Evidence Database, PubMed, and Scopus) personal files were searched, and cross-referencing was undertaken. ELIGIBILITY CRITERIA: Quantitative studies published in English, assessing electrical muscle stimulation in intensive care, were included. DATA EXTRACTION AND DATA SYNTHESIS: One reviewer extracted data using a standardized form, which were cross-checked by a second reviewer. Quality appraisal was undertaken by two independent reviewers using the Physiotherapy Evidence Database and Newcastle-Ottawa scales, and the National Health and Medical Research Council Hierarchy of Evidence Scale. Preferred Reporting Items for Systematic Reviews guidelines were followed. RESULTS: Nine studies on six individual patient groups of 136 participants were included. Eight were randomized controlled trials, with four studies reporting on the same cohort of participants. Electrical muscle stimulation appears to preserve muscle mass and strength in long-stay participants and in those with less acuity. No such benefits were observed when commenced prior to 7 days or in patients with high acuity. One adverse event was reported. Optimal training variables and safety of the intervention require further investigation. CONCLUSIONS: Electrical muscle stimulation is a promising intervention; however, there is conflicting evidence for its effectiveness when administered acutely. Outcomes measured are heterogeneous with small sample sizes.


Asunto(s)
Terapia por Estimulación Eléctrica , Unidades de Cuidados Intensivos , Músculo Esquelético/inervación , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/rehabilitación , Seguridad del Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
12.
Am J Clin Nutr ; 89(5): 1468-75, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19321567

RESUMEN

BACKGROUND: It has been reported that the blunted muscle protein synthetic response to food intake in the elderly can be normalized by increasing the leucine content of a meal. OBJECTIVE: The objective was to assess the effect of 3 mo of leucine supplementation on muscle mass and strength in healthy elderly men. DESIGN: Thirty healthy elderly men with a mean (+/-SEM) age of 71 +/- 4 y and body mass index (BMI; in kg/m(2)) of 26.1 +/- 0.5 were randomly assigned to either a placebo-supplemented (n = 15) or leucine-supplemented (n = 15) group. Leucine or placebo (2.5 g) was administered with each main meal during a 3-mo intervention period. Whole-body insulin sensitivity, muscle strength (one-repetition maximum), muscle mass (measured by computed tomography and dual-energy X-ray absorptiometry), myosin heavy chain isoform distribution, and plasma amino acid and lipid profiles were assessed before, during, and/or after the intervention period. RESULTS: No changes in skeletal muscle mass or strength were observed over time in either the leucine- or placebo-supplemented group. No improvements in indexes of whole-body insulin sensitivity (oral glucose insulin sensitivity index and the homeostasis model assessment of insulin resistance), blood glycated hemoglobin content, or the plasma lipid profile were observed. CONCLUSION: Long-term leucine supplementation (7.5 g/d) does not augment skeletal muscle mass or strength and does not improve glycemic control or the blood lipid profile in healthy elderly men. This trial was registered at clinicaltrials.gov as NCT00807508.


Asunto(s)
Leucina/administración & dosificación , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Absorciometría de Fotón , Anciano , Glucemia/metabolismo , Índice de Masa Corporal , Suplementos Dietéticos , Hemoglobina Glucada/análisis , Humanos , Insulina/sangre , Leucina/farmacología , Masculino , Proteínas Musculares/efectos de los fármacos , Proteínas Musculares/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/efectos de los fármacos , Selección de Paciente , Placebos , Tomografía Computarizada por Rayos X
13.
J Nutr ; 138(11): 2198-204, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18936219

RESUMEN

We investigated the effect of carbohydrate and protein hydrolysate ingestion on whole-body and muscle protein synthesis during a combined endurance and resistance exercise session and subsequent overnight recovery. Twenty healthy men were studied in the evening after consuming a standardized diet throughout the day. Subjects participated in a 2-h exercise session during which beverages containing both carbohydrate (0.15 g x kg(-1) x h(-1)) and a protein hydrolysate (0.15 g x kg(-1) x h(-1)) (C+P, n = 10) or water only (W, n = 10) were ingested. Participants consumed 2 additional beverages during early recovery and remained overnight at the hospital. Continuous i.v. infusions with L-[ring-(13)C(6)]-phenylalanine and L-[ring-(2)H(2)]-tyrosine were applied and blood and muscle samples were collected to assess whole-body and muscle protein synthesis rates. During exercise, whole-body and muscle protein synthesis rates increased by 29 and 48% with protein and carbohydrate coingestion (P < 0.05). Fractional synthetic rates during exercise were 0.083 +/- 0.011%/h in the C+P group and 0.056 +/- 0.003%/h in the W group, (P < 0.05). During subsequent overnight recovery, whole-body protein synthesis was 19% greater in the C+P group than in the W group (P < 0.05). However, mean muscle protein synthesis rates during 9 h of overnight recovery did not differ between groups and were 0.056 +/- 0.004%/h in the C+P group and 0.057 +/- 0.004%/h in the W group (P = 0.89). We conclude that, even in a fed state, protein and carbohydrate supplementation stimulates muscle protein synthesis during exercise. Ingestion of protein with carbohydrate during and immediately after exercise improves whole-body protein synthesis but does not further augment muscle protein synthesis rates during 9 h of subsequent overnight recovery.


Asunto(s)
Carbohidratos/farmacología , Ejercicio Físico/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Hidrolisados de Proteína/farmacología , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Músculo Esquelético/metabolismo
14.
J Nutr ; 138(6): 1079-85, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18492837

RESUMEN

Protein ingestion stimulates muscle protein synthesis and improves net muscle protein balance. Insulin resistance has been suggested to result in a reduced muscle protein synthetic response to food intake. As such, we hypothesized that type 2 diabetes patients have a impaired muscle protein synthetic response to food ingestion. To test this hypothesis, 10 male type 2 diabetes patients using their normal oral glucose-lowering medication (68 +/- 2 y) and 10 matched, normoglycemic men (65 +/- 2 y) were randomly assigned to 2 crossover treatments in which whole body and muscle protein synthesis were measured following the consumption of either carbohydrate (CHO) or carbohydrate with a protein hydrolysate (CHO+PRO). Primed, continuous infusions with L-[ring-13C6]phenylalanine and L-[ring-2H2]tyrosine were applied and blood and muscle samples were collected to assess whole-body protein balance and mixed muscle protein fractional synthetic rate over a 6-h period. Whole-body phenylalanine and tyrosine flux were higher after the CHO+PRO treatment compared with the CHO treatment in the diabetes and control group (P < 0.01). Protein balance was negative following CHO but positive following CHO+PRO treatment in both groups. Muscle protein synthesis rates were higher in both groups following the CHO+PRO (0.086 +/- 0.014%/h) treatment than in the CHO treatment (0.040 +/- 0.003%/h; P < 0.01) with no difference between the diabetes patients and normoglycemic controls. We conclude that the muscle protein synthetic response to CHO or CHO+PRO ingestion is not substantially impaired in longstanding, type 2 diabetes patients treated with oral blood glucose-lowering medication.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Carbohidratos de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Anciano , Aminoácidos/sangre , Glucemia/metabolismo , Estudios Cruzados , Dieta , Suplementos Dietéticos , Metabolismo Energético , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Insulina/sangre , Masculino , Proteínas Musculares/genética , Músculo Esquelético/efectos de los fármacos
15.
Br J Nutr ; 99(3): 571-80, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17697406

RESUMEN

Leucine has been suggested to have the potential to modulate muscle protein metabolism by increasing muscle protein synthesis. The objective of this study was to investigate the surplus value of the co-ingestion of free leucine with protein hydrolysate and carbohydrate following physical activity in elderly men. Eight elderly men (mean age 73 +/- 1 years) were randomly assigned to two cross-over treatments consuming either carbohydrate and protein hydrolysate (CHO+PRO) or carbohydrate, protein hydrolysate with additional leucine (CHO+PRO+leu) after performing 30 min of standardized physical activity. Primed, continuous infusions with L-[ring-(13)C(6)]phenylalanine and L-[ring-(2)H(2)]tyrosine were applied, and blood and muscle samples were collected to assess whole-body protein turnover as well as protein fractional synthetic rate in the vastus lateralis muscle over a 6 h period. Whole-body protein breakdown and synthesis rates were not different between treatments. Phenylalanine oxidation rates were significantly lower in the CHO+PRO+leu v. CHO+PRO treatment. As a result, whole-body protein balance was significantly greater in the CHO+PRO+leu compared to the CHO+PRO treatment (23.8 (SEM 0.3) v. 23.2 (SEM 0.3) micromol/kg per h, respectively; P < 0.05). Mixed muscle fractional synthetic rate averaged 0.081 (SEM 0.003) and 0.082 (SEM 0.006) %/h in the CHO+PRO+leu and CHO+PRO treatment, respectively (NS). Co-ingestion of leucine with carbohydrate and protein following physical activity does not further elevate muscle protein fractional synthetic rate in elderly men when ample protein is ingested.


Asunto(s)
Proteínas en la Dieta/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Leucina/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Anciano , Envejecimiento/metabolismo , Aminoácidos/sangre , Glucemia/metabolismo , Estudios Cruzados , Dieta , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Humanos , Insulina/sangre , Leucina/administración & dosificación , Masculino , Proteínas de la Leche/farmacología , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Proteína de Suero de Leche
16.
Am J Physiol Endocrinol Metab ; 287(4): E712-20, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15165999

RESUMEN

The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Ejercicio Físico/fisiología , Resistencia Física/fisiología , Proteínas/metabolismo , Adulto , Algoritmos , Aminoácidos/metabolismo , Bebidas , Dieta , Humanos , Cinética , Leucina/metabolismo , Masculino , Consumo de Oxígeno/efectos de los fármacos , Fenilalanina/metabolismo , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA